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1. Introduction

Random two-dimensional vector patterns are commonly en-

countered in geology, metallurgy, oceanography , and in all

types of photographic image processing. For convenience , we

will refer to all such random vector fields as multicolor

patterns, even when the vectors of the process describe

features other than color.

We are interes ..ed in how patterns are formed and what

parameters are needed to describe them. We will ask the

following questions: What are the proportions of the various

colors? When we move around the pattern, what are the prob-

abilities of the transitions from one color to the next? What

shap~~are the pieces that comprise the pattern, and how are

these pieces combined? We would ‘ - to know the first and

second order statistics of our & 
: ..ns, e.g., histograms,

variograms; and the coocurrences and differences of colors at

the endpoints of a dropped Buffon needle.

One of the principal applications of the study of random

patterns is to tha analysis and synthesis of visual textures.

First and second order statistics are commonly used as

features for texture classification. If textures can be

modeled as random patterns, it should be possible to predict

the effectiveness of such features and to design optimal

features for various tasks.

The purpose of this report is to present information

about a variety of spatial pattern models, including point

processes , random mosaics , and bombing models. We describe a



number of models for spatial point patterns in Section 2. The

“most random” of these, the Poisson point process, will be

used in the construction of most of the succeeding patterns.

In Section 3, we will model piecewise contiguous patterns

by random mosaics. One of these models, the Poisson Line

model, has interesting Markovian properties. Another, the

Occupancy model, mimics natural cell growth processes. The

use of mosaics to depict patterns is of course ancient. The

Chaldeans were skilled mosaicists by 2500 BCE. The Greeks

further developed the art and were thought to have used pattern

books for standard motifs. The pieces of a mosaic were known

to the Romans as tesserae or tessellae. A mosaic having a

simple geometric design was known as opus tesselatum —- giving
rise to the current term “tessellation” .

We will discuss bombing models in Section 4. The bombs

are geometric figures that are dropped onto a plane. These

figures in union are the foreground of a pattern, with the un-

covered portion of the plane forming the background. Many

natural two-color patterns are formed by bombing processes

or at least can be modelled by them; e.g., bubble holes on the

surface of cement, leaves on the ground, pebbles on a beach,

small stones on the surface of asphalt, etc.

Some statistical properties of our models will be noted

in Section 5. Finally, in Section 6, we will suggest pro-

jects for future research.

Realizations of all the primary models covered in Sections

2 through 4 will be generated on the computer.

L .  ~~~~~~~~~ .~~~~ — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _____________ - : .~~~~ t—~~~~~-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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2. Point Processes

A two-dimensional Poisson process, with intensity A , can

be used to describe a random distribution of points on the

plane. (The parameter A is called the intensity or density

of the process.) This process is characterized by the property

that the expected number of points in a region of area A is IA ,

irrespective of the orientation or shape of the region.

A two—dimensional Poisson point process can be easily

simulated on the computer. A random number generator is used

to generate A pairs (x0,y~~, where (x0,y0) are the coordinates

of a point in the unit square (Fig. 1). These points can be

thought of as dropped onto the square , like raindrops falling

on a puddle, or meteorites striking the moon .

Not all point distributions are random; a point ’s nearest

neighbors , e.g., may be closer or farther than predicted

under a Poisson model. Examples of such processes [1] are

briefly discussed below, but will not be used to generate any

of the textures discussed in this paper.

la) Contagious model: Particles are attracted to their

neighbors. An example of such a process is the spatial dis-

tribution of social animals.

ib) Clustering model (center-satellite process): Par-

tid es are parents (or nuclei) of families of children

(satellites). The parents may be dispersed in a Poisson

manner with their children congregating about them. A good

example of such a process is bushes in a field that reproduce

by sending off shoots.



-~~~~~~~~~ _ _

lc) Doubly stochastic Poisson model [2]; Heterogeneity

is introduced by allowing the density of points to be a func-

tion of location; i.e., A = A (x y). For instance, A might be

dependent on local fertility or microclimate.

2) Inhibitory model: Particles repel their neighbors,

as if they were animals defending their territory .

The distribution of a space-time point process may be a

function of a time varying intensity A. Consider a forest

that starts with a random scattering of trees. As the forest

gets denser, the trees crowd each other out, since they cannot

occupy the same space at the same time. Thus constraints are

imposed upon the location of newly introduced points. The dis-

tribution of trees changes with time from a Poisson to an in-

hibitory process. 

~~~~~~~~~~~~~ - -~~~~~~~~~ ~~~~~~~~~ 
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3. Cell Structure Models

Many natura]. scenes are composed of regions that appear

textured ; the regions themselves are often composed of re-

latively distinct patches of different colors. For instance,

when we view a terrestrial landscape from the air we see a

mosaic of different plant species and land uses. Expensive

agricultural machinery fosters the regionalization of crops

into large fields. Urban, suburban , desert , mountainous, and

water regions all have distinct appearances from the air.

Such regions can be modelled by random mosaics [3]. In this

section we will describe a family of pattern generation pro-

cesses that can produce random mosaics.

Random mosaics are constructed in two steps:

1) Tessellate a planar region into cells. We will only

consider tessellations composed of bounded convex

polygons.

2) Independently assign one of m colors to each cell

according to a fixed set of probabilities

~l’~~”’~m i~ 1~~ 

= l.*

*Other random coloring schemes are possible. Examples:
Ci) Each cell has a constant color throughout, where the
constants are independently chosen from a single normal dis-
tribution. (ii) All cell borders are given a thickness and
one color, and all cell interiors are given a second color.

A
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By this process, we partition region A into subregions

m —

; U A .  = A , where A. is defined to be the unionin j l 3

of all cells of color j .  The partitioning of A is the

realization of a random process with the following stationary

and transition probabilities: 
•

(1) For all sEA, Pr (sEA~) = Pj for i = l ,2,...,m.

(2) For all (s,s’)€A, with distance d = Is— s ’ I be-

tween them, P r ( s ’
~~

A
~~t sE A ~~

) = P~~~(d) = p~ (l_W(dJ ) +

o
~~
w(d) for i,j=l,2,. . .,m. W(d) is the probability

that any two points that are distance d apart are

both in the same cell, and is the Kronecker delta.

Cell structure models form a family whose members differ

only in the manner in which the plane is tessellated . We

will describe some important members of this family , start-

ing with the most random members and progressing toward more

regular examples.

The first model we will consider is a Gaussian random

process. It is a degenerate form of a cell structure model,

in that each point of an image constitutes an entire cell.

Nondegenerate cell structure models are constructed by

two types of processes: (1) line processes and (2) cell

growth processes. The first type of process uses straight

lines to partition a region into cells. The positions and

orientations of these lines can range from randomly distri-

buted (Poisson line model) to regularly arranged (Checker-

board model). The second type of process uses a spatial 
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point process to generate the nuclei of growing cells. If

the nuclei are randomly positioned an Occupancy model is pro-

duced.

p - . 

— -- ~~~~~~~~~~~~~~~ -.. -- - -------~~~~- - ~~~- -- —~~-—--—-~~~~~~~~~



3.1 Gaussian Random Process

A real random vector process {Y5 Is~
EA} is a Gaussian

random process if for every f in ite set of points {s1)EA, the

corresponding random vectors Y5 are jointly Gaussian random

vectors. A (stationary) Gaussian random vector process is

completely defined (statistically) by its mean ii = E(Y5 ) and

auto—covariance matrix E (b), where Z(b) = E[(Y -11)(Y _u)t].5i+b

The process reduces to one of white noise if

E (b) = E(0) ~(b) , where ~(b) = 1 when b = 0 , and t~.(b) = 0

otherwise.

——--- — ~~ - ~~- — - ~~~~~~~~~~~~~~ h~~~~~~~ -
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3.2 Random Line and Cell Growth Processes

a) Poisson Line Model: L( I 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Consider a system of intersecting lines in the plane

with random positions and orientations. Such a system when de—

rived by the following Poisson process possesses fundamental

properties of homogeneity and isotropy . A Poisson process of

intensity r/ir chooses points (e,p) in the infinite rectangular

strip [0 ~ 9 < it , —~~~ < p < o]. Each of these points can be

used to construct a line in the plane of the form

xcos8 + ysine - p = 0, where p is the distance to an arbitrarily

chosen origin. One can use this process to tessellate any

finite region A into cells (Fig . 2a). It can be seen that there

are almost certainly four cells converging at each vertex.

These cells are then colored in the manner previously described .

The sequence of colors obtained by sampling an n-

color Poisson line mosaic at equal intervals is an n—state

discrete Markov chain with transition matrix P(d) given

by

A A ... A1 2 m -

A1 P11(d) P21(d) ... P 1(d)

A2 P12(d) P22(d) P 2(d)

P(d) = . . .
A Pl (d) P2m(d) •.. P~~ (4)

where d is the sampling interval. A matrix of the above form

is a necessary but not sufficient condition for randomness.

The additional requirement for the random mingling of the color



L cells places a further restriction on P(d); namely P~~ =

for all ct,~ ~ 
j. A Markov transition matrix having this

form possesses the following properties [4, 5]:

(1) Reversibility - The probability that color region

A1 follows A~ in the sampling sequenc~ is the same as the

probability that A~ follows A1. This condition can be ex-

pressed in terms of the stationary and transition probabilities

of the process:

= p1P31
(d), where P~~~(d) = P. (l—W (~~) ÷ o~~W(d)

and W(d)  e
_2

~~~’it

It can be shown that this condition reduces to

P~1(d)-P~~.(d) = a constant = y for 1 £ i, j ~ n , i ~ j.

There are many situations when a texture does , not possess this

property. For example, consider an aerial photograph of a

field where the distribution of plant species is controlled

by the prevailing winds or predominant direction of sunlight.

(2) Lumpability - The chain resulting from any regroup-

ing or renaming of the color states is still Markov.

(3) Specifiability - A ranthm rn-color Poisson line

mosaic is completely specified by 3m parameters. To specify

the area covered by each of the colors we need to provide any

m-l independent terms of the stationary probability vector

To specify the transition matrix we need P~~

for all i and j. However the following restrictions mean that

the entire matrix can be specified by only one parameter,

namely the constant y: 

.-- -~~~~~~ -~~~~ 
.— —- - ---.~~ ---~~ - 
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( i )  = p~ P~~~(d) + P 13 (d)
~~~~pk ; 1 ~ i , ~ 

£ m , i 
~ 

j

(ii)  P
j j

(d) _P
kk

(d) = a constant = y.

The constant y is proportional to the expected cell

width E (w) = . An additional 2m parameters are needed for

the means and covariances of the m colors.

(4)  The chain is irreducible, aperiodic , and all its

states are recurrent states, since 0 < P~~~(d) < 1 for all i

and j .  These properties are defined as follows . The period of

state a of a Markov chain is the greatest common divisor of

all integers n � 1 for which the probability of returning to

state a , starting from state a , in n steps is nonzero . A

Markov chain is aperiodic if its period is 1. A Markov chain

is irreducible if all its states are accessible from each

other . A state of a Markov chain is recurrent if when we

start from the state we will eventually return to it.

Two or more contiguous cells of the same color are

said to form a patch. We would next like to derive the ratio

of patch width to cell width. Consider the distribution of

length L
a of color a along a transect. It can be shown [4]

• that the sizes of neighboring cells are independent for a — 
-
,

Poisson line tessellation. The points of intersection of an

arbitrary line with a Poisson line tessellation constitute a

Poisson line process with intensity 2T/ 1r . This means that the

expected number k of lines crossing a. transect of unit length

is 2-n it . Thus is the sum of j independent values of 1/k .

Let g(L~~f j )  denote the conditional pdf of ~a given j .  Then

-, -——-— - --,“-—-—--— —--,.“_— _—-_--- - 
___ _ _~_s_ _-~
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(j—l)!

A run of j cells of color a will occur if the succeeding j—l

cells are of color a and a cell of another color follows to

terminate the run . The probability that this will happen is

The conditional pdf of La wkA~ n j is allowed to

vary is therefore

g(~~ ) = ~~ g(~~~I i ) P~~~~( l_ P~ )
j — l

9.- ~~~
= !.L(l_p  ) e it a

it a j=l

— 2-n
— 

2-n ,~~_
— 

it ’ ~~ct ’ 
e

p

Thus the expected width of a patch of color a is

times the expected cell width .

Showing that a texture fits a Poisson line model re-

quires the proof of a very complicated hypothesis. We must

show that i) the pattern is not directionally dependent,

ii) cells of all colors are randomly mingled, and iii) the

pattern of each color when taken against a background of the

remaining colors forms a 2—color Poisson lil -3 mosaic.

b) Occupancy Model

The occupancy model is defined as follows. A

Poisson process with intensity A drops points onto the plane.

Each of these ~oints spreads out to occupy a “Dirichlet cell”

.

~

—

~

— - -—-

~

— ——-,—--~.—-•, ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -‘~~ 
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consisting of all points on the plane that are nearer to it

than to any of the other Poisson points. These cells are con-

vex Voronoi polygons having, on average, six sides (Fig. 2d).

(It can be shown (6] that nearest neighbors can be determined

in O (AlogA) time.) These cells are then independently

assigned colors as usual.

Two models that are related to the occupancy model

will be briefly noted. A random triangular tessellation can

be constructed from Delaunay triangles (8] that have as their

vertices the three nuclei that are equidistant from a vertex

of a Voronoi polygon. Thus the intersections of the borders

of Voronoi polygons are the circumcenters of the Delaunay

triangles (see Fig. 3).

The Johnson-Mehl model [7] is often used to describe

metallurgical surfaces. This model differs from the occupancy

model only in that points are dropped onto the plane as a

function of time; i.e., A = A (‘r). These points start expand-

ing circularly as soon as they hit the plane. A point on the

plane is assigned to the cell whose expanding border first

reaches it. Cells formed by this process do not have straight

line edges and are not necessarily convex (Fig. 4). Irregular

configurations occur when late arriving points fall near the

interface of two large cells.

The occupancy model simulates natural cell growth

processes on the plane. In contrast, true Poisson line

mosaics are surely rare in nature. There are, however, several

good reasons for choosing the Poisson line model as a standard 

--~~~~ - -~~~~~~~~~•— ~~~~~~~-,---~~~~~~~~~ -•- ~~~~~~~~~-—-~~~~~~~~~ ~~~~~~~~~~-•-~~~~~~~ -~~~--~ -~~~~~~~ -~~
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with which to compare natural mosaic patterns:

(1) The Poisson line model is mathematically more

tractable. We do not have an elementary form for W(d) for the

occupancy model [9].

(2) The sizes of adjacent cells are independent for

the Poisson line model, but not for the occupancy model [41 .

(3) We would not expect cells formed by a natural

process to have the sharp corners produced by a Poisson line

tessellation. But a natural texture for which the variance

of cell size closely resembles that of the Poisson line model

is perfectly plausible [4].

I
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3.3 Regular Line and Cell Growth Processes

a) Rotated Checkerboard Model: C(b,p1,.. •‘
~
ml, ’l’•••’11m’

This is an example of a cell structure model where

the cells have a uniform diameter. A checkerboard model can

be formed by the following procedure. First choose the origin

of an x—y coordinate system on the plane with uniform prob-

ability density. Then tessellate the plane into square cells

of side length b Next, this “checkerboard” is rotated by an

angle chosen with uniform probability from the interval (0 ,2ir).

The cells are now independently assigned one of the m tile

types as before (Fig. 2h). The solution for W(d) for this

model is discussed in the statistics literature as an exten—

sion of Buffon ’s needle problem:

W(d) = 1 -4d/irb + d2/nb2; d £ b
1

= 1—2/it — (4/it)cos~~~(b/d) — d2/irb2 + (4/ it ) (d 2/b2 —l ) 2 ;

b < d ~~~~~/~~~b

0 ; d > / ~~b.

4 - b) Rotated Hexagon Model [10] :

Eiv
~~~~~

Em)

This model is analogous to the checkerboard model,

except that hexagons are used in place of squares. Another

way of viewing these models is as follows: Cons~~er a system

of particles on the vertices of a regular lattice (Figs.5,6a).

Let these particles be the nuclei of growing cells. Cells will

-- -- 
- ,. 
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grow unimpeded in a circular fashion until they reach the

tightly packed state shown in Figures 5,6b. At this moment

each circle has four or six points of contact with its neigh-

bors, depending on the nature of the lattice. As the cells con-

tinue to grow these points of contact will be extended into

lines , and the equal circles shown in Figures 5,6b will be

converted into the equal hexagons or squares shown in Figures

5,6c. Notice the duality between a hexagonal and triangular

tessellation (Fig. 7).

~ 

-------------- —~~~--- - -—--•---
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4. Bombing Models

Random two—color patterns can be formed by bombing pro-

cesses. The bombs are geometric figures that are dropped onto

the plane. The sizes and shapes of these figures are fixed,

but their positions and orientations are random. The location

of a figure is determined by its center point (x0,y0) (i.e.,

center of gravity), and the orientation 0 of its principal

axis. By this process a fixed region A is randomly partitioned

into A~ and A2 = A - A1, where A1 consists of that part of A that

is covered by the dropped figures. We shall refer to the

figures comprising A1 as isotropically distributed .

We are assuming translation invariance. Hence the number

of center points falling on any subregion of the plane depends

only upon the area of the subregion -- r~t on its shape or
orientation. The number of center points falling on any sub-

region A has a Poisson distribution with mean XA , where A is

the expected number of center points falling on any unit area

of the plane.

To complete the specification of our model, we will color

regions A1 and A2 in a Gaussian fashion, with distributions

and N(1t 2,E2) respectively. We will now consider

three coverage theorems for bombing processes.

Let K be a randomly positioned convex figure with fixed

orientation 9. Let K0 be another convex region. Let a(K0,K,0)

denote the area in which the center point of K can be placed

so that K intersects K0. The area cx(K0,K,9) has as its bor-

der the locus of points where the center point of K might fall

- -
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so that the region K with orientation 9 just touches the bor-

ders of I(~ (Fig . 8 ) .

The measure of all center points of the figure K where it

intersects K0 is

211

m(K0,K) = f a (I(~ ,K ,9) dF9
0

where F(e) is the distribution function of the orientation

parameter 9.

Theorem I (Duf our) [11]: Consider an infinite collection of

congruent figures K independently, identically, and homogeneously

distributed over the plane. The number of figures K intersect-

ing another convex figure K~ has a Poisson distribution with

mean Xm(K0,K).

Theorem II (Dufour) [11]: Consider an infinite collection of

congruent random figures of area a and perimeter L distributed

isotropically, independently, and homogeneously throughout the

plane. The number of such figures intersecting another convex

figure of area a0 and perimeter ~~ has a Poisson distribution

with mean A (a~ + a + L0L/2ir).

Consider a circular bombing process of intensity A. For

a circle of radius r, the probability p2 that a point chosen

at random on the plane is isolated is equal to the probability

that there is no circle within a radius r around the point as its

center. Thus p2 = exp(-wr2A ) = exp(—Aa), where a is the area

of a circle. The proportion p1 of the plane covered by

circles is the probability that a point is not isolated: 

- —•-~--— -- ~~~~~~~——— - 
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p1 = 1-p2 = 1-exp (-Xa). Notice that if we drop two circles of

area ]./2a every time we previously dropped a single circle,

the area covered will be unchanged. The fact that two small

circles cannot possibly combine to produce the same shape as a

single larger circle suggests that the area covered is indepen—

dent of the shape of the dropped figures.

Theorem III: If an infinite collection of congruent convex

figures, each of area a, are isotropically, independently, and

homogeneously distributed throughout the plane, then the pro-

portion p1 of the plane covered by the figures is l
~
exp(

~
Aa).

Proof: This follows directly from Theorem I. Let be a

point on the plane. The number N of randomly dropped figures K

intersecting the point K0 has a Poisson distribution with mean

Aci, where a is the area of K. Therefore

f(N) = ~~ (A a) N e~~~

The probability p2 that a point is isolated is the probability

that N=0:

p2 = Pr(N=0) = f(0) = e~~~ .

The probability p1 that a point is not isolated is therefore

1_e L.

Theorem III relates the number of dropped figures to the

proportion of the plane covered : 
-

A = 
~~~~~~ 

ln (l—p 1) 
- in p2

~ 

4
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This is a useful equation for estimating the number of particles

on a microscope slide, parts on a conveyor belt, trees in a

field, etc.

Examples of bombing processes —

a) Random Line Segment Process L (t ,t)

Line segments each of length 1. are distributed

isotropically over the plane . The orientation of a line seg-

ment is specified by the angle 9 between the x-axis and the

perpendicular to the line segment . The midpoint (x 0 ,y0) of

the line segment specifies its position .

- 

(X
~

,Y
~

)\
~~~~~~~~

Assume that we are given two line segments centered

at randomly selected points P and Q, with an angle 0 between

them. They will intersect if P falls within a rhombus of

side length £ centered at Q.

O

K

P 

—,—-~~ •- - .  - - ,• -“
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The area of the rhombus is 9.2sin9, so that we have

71 9.2 29.2
m(K0sK) = 2 f ½ 9 . sine dFe 2 J  ~~~

sine de = T

Thus from Theorem I, the number N of randomly distributed line

segments of length 9. intersecting a fixed line segment of
- 

2XL2length 9. has a Poisson distribution with mean —i—

N
f (N) = 

2A L~ exp _2AL2)

The probability p0 that a line segment is isolated is the prob-

ability that N is zero.

p0 = Pr(N=0) = f(0) = ex~ (—2AL 2/n) .

b) Elliptical Bombing Process E(A ,c1,c2,1.t11 Z1d121 E2)

Ellipses having major axis 2c1 and minor axis 2c2 are

distributed randomly over the plane. The orientation of an

ellipse is specified by the angle 8 between the x-axis and

the perpendicular to the major axis of the ellipse. The mid-

point of the ellipse specifies its position.

The parametric equatior~~for the elli pse are

X X
0 

c1 cosa cosO —c2 sina sinG

y—y0 c1 cosa sine +c2 sina cos9;

— --- —-- —,‘---— ., — -. .—•—-— - - •—.~~~~ . -- --. —• - -•---—--———-—— — ,- -.--—
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where a is between 0 and 2it. Thus

(x-x0) cosG + (y—y0) sinG = cosa

c1 c1

-(x-x0) sinG + (y-y 0) cosG = sina
C
2 

C
2

The equation for the interior of the ellipse is

1 2

J 1~~~
Cc~ 

cosG + (y-y0) sinG]
c1 ci

+ 

[

(X;X
O

) sinG + (y-y0) cose] < 
l}

The area of the ellipse is ~ = itc1c2 , and the perimeter is

L = 4c1E 2it, using elliptical integral tables for E.

From Theorem II, the number N of randomly distributed

ellipses intersecting a fixed ellipse has a Poisson distribu-

tion with mean

4c1E 22Ac1(irc2+ 
] z irA [c 1+c2] ],.

The probability that an ellipse is isolated is

p0 = Pr(N=O) = f(0) exp [—1TA(c1+c2]
2
].

A realization of an ellipsoidal bombing process is shown in

Figure 9a.

-

~
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c) Circular Bombing Process [121 C[~~,c,ii 1,E1,ii 2,E2)

A circular bombing process is a special case of the

elliptical bombing process , where c1 = c2 = c (Fig . 9b) .

Any two circles in the plane will overlap if the dis—

tance between their centers is less than their diameter. The

probability p0 that a circle is isolated is equal to the prob-

ability that there is no circle center within radius 2r of

a center point placed randomly on the plane . That is ,
—4 w r ~ Ap0 e

The transition probabilities for this process are

given by Switzer [13]:

p1P11(d) = (2p1—l ) + ( 1 ) H(d/ r )

where H(d/r) =fi + (
~~

1i/ ~
- (

~~~2) + (~~) sin~~~(~~ -) for d ~ 2r

2 for d > 2r

= (p1/p 2 ) P21 (d)

P22 (d) = 1—P12 (d)

P21 (d) = 1—P11 (d)

A special case of the circular bombing process occurs

when each of the circles covers only one pixel. The process

then becomes one of randomly thrown Gaussian noise (Fig . 9c) .

d) Rectangular Bombing Process R(A ,c11c 2ni1,E1,p 2,E2)

Rectangles of major axis 2c1 and minor axis 2c2 are

randomly dropped onto the plane. The orientation of a rect-

angle is specified by the angle 8 between the x axis and the

IL 
~~~~~~~~~~~~~~-.~~ - - --- d. - - - - . _ • ~~~•~~~~~~~~~~~~~~~~ .
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perpendicular to the major axis of the rectangle. The mid-

point of a rectangle specifies its position.

A realization of a rectangular bombing process is shown in

Fig. 9d.

The equationsfor a rectangle are

! (x—x 0) cosG + (y—y 0) sine j = c1

I- (x-x0)sine + (y— y 0) cosG~ = c2

The interior of the rectangle is specified by

tI (x-x0) cos8 + (y—y 0) sinO l < 1; - (x-x0) sinG + (y-y0) cos8~ < 1)

Cl Cl C
2 

C
2

From Theorem II , the number N of randomly distributed

rectangles intersecting a fixed rectangle has a Poisson distri-

bution with mean 8X (c1c2 + ~~(c 1+c 2 ) 2 ) .  The probability that a

rectangle is isolated is:

p0 = Pr(N=O) = f(O) = exp(—8A(c1c2 +

Rectangles of one pixel thickness can be used to approximate

Poisson line segments (Fig. 9f). 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~ -~ - - --—
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5. Statistics

The statistical properties of our models can be obtained

directly from the stationary and transition probabilities.

Note that we have given transition probabilities only for three

models —— Poisson Line , Checkerboard , and Circular Bombing .

We will assume that each region A~ is colored by a Gaussian

random vector process having parameters ji~ and 
~~~~~~~~~

. Let

f ( x ,p~~, E 1~ ) = 

(211 ) W2~~ j½ 
exp [-

a) Histogram

Let H ( c )  denote the probability that a point on an

image has color c , where c is a q—element vector . For example, 
- 

-

for visual color

r red content of point s =

H ( c )  = Pr green content of point S = C
2

blue content of point s = c3

Then

H ( c )  = 
~~p~

f ( cn 1~~
, E 11)

b) Cooccurrence

Drop a Buf f on needle of length d onto a picture . The

endpoints of the needle are denoted by s and s’. Prç~ ) de-

notes the probability that s lands on color Ck and s’ lands on

color c 9.. Then

- - - - , - - —,  _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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Pr(c
k) = 

.
~~~~ •~~•

Pr(scA11 s’~ A~) Pr[color(s) ck and color(s1) = c9.~9. 3 1 1 )

• seA j~ 5 ’CA~ ]

where Pr(scA ~~s’cA~) = P~P.~~(d)~ and

Pr[color(s)=ck, color (s’)=c9. SE A ~~~~S
I E A ~~] = f (~

k), ( 1) ,  ~~( C i ) ]
9.

[z.~~o z .  . (d

~(d) = 
1J

E
~~~

(d) Z~~~(O)

If there is no correlation across region boundaries, we have

C
Pr( k) = ~ Pr(seA~ ,s I cA .) P r [co1or(s) Cks color(s ’) = c 9. I scA 1, s ’ eA . ]

C
9.

+~~ Pr (S~ 5 ’ CAi ) Pr [color(s)=c k ,  color(s ’) = c9. s ,s~ A 1)

C 1.1 .
= ~ P.P. .(d) f[(

k) ( 
1

) ~(d)1
9.. li

i

C 1.’.
+)~~ P

~~~
(d) f[( k), ( ‘) ,  ~ (d) ]

i 2.

where
-

- E..(O) 0

~(d) = ~~~~~

0 E~~~(O)

In the cell structure models discussed in Section 3, where it

is assumed that cells are independently colored, we have no

correlation across cell boundaries, and we obtain

A -~~~~~~ ---~~~~~~~~ 
- - 



r —
~~ 

- —-——- --—-~~
--——— —

~~~~~~~
..

~l -~~~~~~~~ — — - ,__—_ ---—-_ _-_--_.~~~,_•=--- ... -~~~~~~~~~ .— 
~~~~~~~~~~~~~~~~~~

C C A

~~~~~~ = ~ P.P. .(d) f ((k), ( 
1) ,  ~(d)J

i~’j ~ 9.

c A

+ ~ P’( l—W ( d) ) f [ ( ~
k ) ,  (~ ‘)~ ~ (d) ]

i 1 2. i

+ ~ P~ W ( d )  
~~~~~~~~~ 

( 1) E (d) ]

(3) Difference

Again drop a needle of ler~gth d onto a picture. Let

V (t ~ ) denote the sum over all colors c of the probability that

s’ lands on color c+~ and s lands on color c. Then

V ( A )  = 

~ J Pr(sE;Aiis ’cAj)Pr[Color(s) = c, color (s’) =

c+L~ f scA 1,s ‘ cA) I

The equations under various assumptions are analogous to those

for cooccurrence.

(6) Variogram

Again drop a needle of length d onto a picture.

Let V(d) denote the mean squared Color difference at the end-

points of the needle. Then

V(d) = E [(co lo r( s )_ colo r (s l ) ) t (co lor(s)—color(s ’ ) ) ]

If there is no correlation across region boundaries we get

V(d) = [1 (d) + E
3~~
(d) + ~~i~~ j)

t 
~~~~~~~~~~~~~~~

For the cell structure models, there is no correlation

across cell boundaries, and we have 

-- -~~~~~~~~~- - - — - -~~~~-— ------ -—-~~ - - --——-.- .~~~~ - - - - - , - -



pr r — 
~~~~~~~

— ----- - — - -

~~

V(d) = ~~~~~
[Z

~~~
(0) + E j j ( O )  + (~ i

_
~ j)

t 
~~~~~~~~~~~~~~

+ 
~~ 

[2E
~~~

(d)]PjW(d)

+ ~ [2E
~~~

(0)1P
~~

[l
~
W (d)]. 

——~~~~
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6. Discussion

We have presented a number of models for random spatial

pattern. They not only provide interesting descriptions of

pattern formation processes, but also suggest the following

projects for future research.

Given a pattern, we might attempt to determine the best

fitting model. Hopefully , this will of fer  some insight into

• the pattern’s structure and even into the type of natural pro-

cess that created it. Preliminary work in this direction was

done in an earlier report (19]. If we can derive the para-

meters of a model from a pattern, then we can neatly charac-

terize the pattern as a realization of a particular random

process.

We have given the sets of parameters required by each of

our models. These parameters could be used as features to

discriminate between different models o~ different realizations

of the same model. Texture discrimination problems are funda-

mental to the automated analysis of remote sensing data and

medical imagery.

Our models could also be used to generate textures.

Current computer generated imagery represents textu~~d surfaces

by white noise or repeated patterns. Random textures will add

realism to computer animated films. Realistic computer gen-
- 

erated images can also be used for visual perception experi-

ments. These will offer other insights into texture percep-

tion than those obtained through the use of random dot patterns. 

~~~~~~~~~~~~~~~~~~~~~~~~~~ -
~~~~~~~~~~~~~--- -- ---- ~~--.—- - 
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Much of the research on these models was done by statis-

tical ecologists -- Matern, Pielou, and Switzer. They were

interested in reconstructing planar maps from coarsely sampled

data. They compared estimated maps constructed by different

sampling schemes, under different source errors. These same

techniques could be used to reconstruct a coarsely sampled

image.

In an attempt to better understand these models, para-

meters that cannot be determined analytically might be

obtained by a Monte Carlo simulation. For example , Cram and

Miles (21] generated 200,000 Poisson line polygons to estimate

some important unknown distribution properties of cell ver-

tices, perimeter, and area. A similar study could be under-

taken to obtain the transition probabilities and cell statis-

tics of the occupancy and Johnson-Mehl models.

A number of other models for random spatial pattern are

available. A broader study is needed to compare and catalog

them. Mandlebrot [141 models irregular and fragmentary

natural patterns by Brownian surfaces (Fig. 10). Wong [16],

Hassner (17], and others model images by two-dimensional ran-

dom fields. Matheron [18] and a number of other French mathe-

maticians describe random spatial patterns in terms of re-

gionalized random variables. Further study of such models in

connection with texture analysis and synthesis would be de-

sirable.

_ _ _  _ _ _ _
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Figure 1. A realization of a two-dimensional
Poisson point process with A = 50.



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-

~
-
~~
-

~~~~~~~ 
- - - _ _ _ _ _ _ _

Figure 2. Cell structure models.

a) Poisson line tessellation
b) L(16,(.33,.33 ,.34),(l5 ,30,45),

(25,25 ,25))
c) 2b mean filtered over a 3—by—3

neighborhood
d) Occupancy model tessellation
e) O(40,(.33,.33,.34),(15,30,45),

(25,25 ,25))
f) 2e mean filtered over a 3-by-3

neighborhood
g)  Rotated checkerboard tessellation

h) C(~~-7,(.33 ,.33,.34),(l5,30,5O) ,

(25,25 ,25))
i) 2h mean filtered over a 3-by—3

neighborhood
j) Rotated hexagonal tessellation
k) H (40 ,(.33 ,.33 ,.34),(15 ,30 ,45),

(25,25,25))
1) 2 . k  mean fil tered over a 3-by-3

neighborhood
_ _ _ _ _ _  ----~~~ ~~~~---—~~~~~~ ----~~~~~~-- --- ~—-- -  -rn-- ~~ --~~~~~~~ -
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Figure 3. Cells generated by occupancy model.

Delaunay triangles shown as dashed
lines.

a

a

.

.

Figure 4. Cells generated by the Johnson-Mehl
model. (From [7].) -
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5a 5b 5 c

Figure 5. Square growth process.

Figure 6. Hexagonal growth process. 
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H III
Figure 7. Hexagonal tessellation.

\ct (K ,K,9) ,‘,

Figure 8. ct(K01K,9) for two circles.
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Figure 9. Realizations of bombing processes. j

a) E ( 2 5 ,10 , 5 , 20 , 10, 50, 10) L
127 127 H

b) C(25, 7, 20, 10, 50, 10)
127

c) C(40, 1, 13 , 10, 53, 10)
127

d) R(30, 15, 7, 20, 25, 40, 25)
127 127

e) S(30, 7, 20, 10, 50, 10)
127

f) R(30, 10, 1, 20, 10 , 50, 10)
127 127 -

_  
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I L~h ~~
Figure 10. Brownia n surface texture.
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